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ADJOINT TRIPLES FOR FUZZY INFORMATION
SYSTEMS

Young HEE Kiv*

ABSTRACT. In this paper, we construct adjoint triples on lattices
as non-commutative or non-associative algebraic structures. More-
over, we will construct adjoint triples on fuzzy sets which induce
three types of fuzzy information systems which are the concept-
forming operators, fuzzy relational erosions(dilations) and fuzzy re-
lational property-oriented erosions(dilations). We give their exam-
ples.

1. Introduction

Complete residuated lattice, BL-algebra and quantale are important
mathematical tools as algebraic structures for many valued logics [2,7-
11,16-18]. However, these structures are very restrictive. As a weak
condition with non-commutative or non-associative, Abdel-Hamid [1]
introduced the notion of adjoint triples. Medina et al. [3-5] introduced
the notion of algebraic structures [3-5], formal concept lattices [6,13,14],
fuzzy relational mathematical morphology [12] and fuzzy logic program-
ming [15] on an adjoint triple.

The main purpose of this paper is how to construct adjoint triples.
In section 3, we construct adjoint triples with one of three operators as
®, / and N\, Moreover, we give their examples.

In section 4, let (®, 7, ) be an adjoint triple with respect to (L1, <y
), (L2, <2), (L3, <3). Let X be a set of objects, Y be a set of attributes.
We will construct three types of adjoint triples which induce three types
of information systems from the following (1), (2) and (3).
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(1) We can construct the adjoint triple (®, 7, Y\,) with respect to
(L¥,<1), (LY, <2) and ((LY)*,<3). Form this result, for an infor-
mation system (X,Y, € (LY)¥), we can obtain the concept-forming
operators (ref.[6,13,14]) F': LY — LY and G : LY — Li¥ as follows

F(N) = (f 7)) = Naex (f(2) 7 9(2)(y),
G(9)(x) = (9 \¥)(@) = Nyey (9(y) N ¥ (2) (1))

(2) We can construct the adjoint triple (®, 7, Y\,) with respect to
(L%, <1), ((L3)X,<5) and (LY, <3). Form this result, for an infor-
mation system (X,Y,¢ € (L3)X), we can obtain a fuzzy relational
erosion and fuzzy relational dilation (ref.[6,13,14]) with respect to ¢,
€5 LY — L and 6, : LY — LY as follows

ep(h)(x) = (¢ N h) (@) = Ayey (0(2)(y) N h(y)),
0p(F) (W) = (f © ) (y) = Vaex (f(2) © 6(2)(y))-

(3) Let (®, 7, \) be an adjoint triple with respect to (L1, <1), (L2, <o
) and (L3, <3). Let X be a set of objects, Y be a set of attributes and
the triple (X,Y,0 € (LY)X) be an information system. From the adjoint
triple (®, 7, \,) with respect to (L)X, <1), (LY, <) and (L, <3) in
above corollary, we construct a fuzzy relational property-oriented ero-
sion and fuzzy relational property-oriented dilation (ref.[6,13,14]) with
respect to 0, eg : L3 — LY and &, : LY — L% is defined as

co(h)(y) = (0 7 1)(y) = Noex (0(2)(y) /7 h(z)),
d9(f)(x) = (0 © 9)(x) = V ey (0(2)(y) © 9(y))-

2. Preliminaries

DEFINITION 2.1. [3-5] Let (L1, <1), (L2, <2) and (L3, <3) be complete
lattices. We say that for the mappings ® : Ly X Lo — L3, \; Lo X L3 —
Ly and Ly x Ly — Lo, (®, ) is called an adjoint triple with
respect to (L1,<1), (L2,<2) and (Ls3,<3) if it satisfies the following
conditions:

r<jy\ziffeQy<sgziff y<sx Nzforx € L,y € Lo,z € Lg.

LEMMA 2.2. [3-5] Let L; be lattices for i = 1,2,3. Let (®,\, /') be
an adjoint triple with respect to (L1,<1), (L2, <2) and (L3, <s3). For
each x,x1,12 € L1,y,y1,y2 € Lo,z,21,29 € L3, we have the following
properties.

(1) If x1 <y @9, then 1 ©y <s 2o @y and x3 Sz <o x1 S 2.

(2) If y1 <9 yo, thenx @ y1 < x Oy and yo \, z <1 Y1 \| 2.
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) If 21 <g z9, thenx /21 <o x S z9 and y \ 21 <1 Y \( 22.
)y<2x/‘($®y) <1y \(z0Oy).
Jr o /2)<z2 (y\2) Oy <3z
)

3
4
5
6)y<a(y\z2) "z, x<i(z 2)\ 2

(
(
(
(

3. Construction of adjoint triples

In this section, we construct an adjoint triple with one of three oper-
ators as ®, ' and \.

THEOREM 3.1. Let (L1,<1), (L2,<2) and (Ls,<3) be lattices and
©: Ly x Ly = L3 be amap. Ifx® (V;c;v:i) = Ve (x ©y;) for each
{yj}ijes and \/{y € Lo | x ©y <3 2} exists for each x € L1,z € L3. then
the following statements (1), (2) and (3) are equivalent.

(1) If 21 <3 29, then x /' z1 <9 &  z3. Moreover, x ® (v / z) <3 z
andy <oz 2 (2O y).

2)z z2=V{ye L |z0y <32}

B)roy<szzify<sz “z

Proof. (1) = (2). Put P(z,2) = \/{y € L | 2®y <3 z}. By (1), since
xO(x Nz) <3z P(z,x) >2x Nz

Suppose there exist € L1,z € Lg such that P(z,z) €2 « /' z. Then
there exists y € Lo such that y €9 x "z and 2 ©® y <3 z. By (1),

y<ox S(x0y) <oz 2z
It is a contradiction. Hence P(x,z) <q 2 / z. Thus, x /' z = P(x,z) =
V{iyeL|z0oy <3z}
(2) = (3). Let t©y <g z. Theny <gz 7 z.
Ify<ox Mz thenzOy <sz0(x Nz)=20\{y1 € Lo |20y <3
z}) =V(@oy) <s 2.
(3) = (1). Sincez Oy <szx Oy, y <oz /(xr®y). Since z /N z <9
x  z,x0(x Nz2)<sz Ifz1 <329, 20 (x 7 21) <321 <3 29. Hence
xSz Zox /2.
]

THEOREM 3.2. Let (L1,<1), (L2,<2) and (L3, <3) be lattices and
®: Ly x Ly = L3 be a map. If (\/;cpxi) ©y = V,e(xs ©y) for each
{z;}ier and \/{zx € L1 | x ® y <3 z} exists for each y € Lo,z € L3, then
(1), (2) and (3) are equivalent.

(1) If 21 <3 29, then y \, z1 <1 y \ 22. Moreover, for all x,y € L,
(yN\2)Oy<szandx <1y \ (z0Oy).

2y Nz=V{zeli|zoy<sz}
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B)rxoy<gziffx <1y \ 2

Proof. (1) = (2). Put Q(y,2) = \V/{z € L1 | z ©y <3 z}. By (1),
since (y \ 2) ©y <5 2, Qy,2) =1y N 2.

Suppose there exist z € L3,y € Lo such that Q(y, z) €1 y \( z. Then
there exists z € L such that x £; y \yz and x © y <3 z. By (1),

<1y N (TOY) <1y N\

It is a contradiction. Hence Q(y, z) <1y N\ z. Thus, y \, z = Q(y,2) =
V{ze L |z0y <3z}

(2) = (3). Let @y <3 z. Then = <; y \ 2.

Ife<iyNozthmnzoy<s(y\zoy=V{zecl [zoy<s
z}) =V(z2 0y) <3 2.

(3) = (1). Sincez Oy <zzx Oy, x <1y \( (zOy). Since y \, z <4
YNz (YN 2)0y<sgz Ifz <32z, (y \y21) Oy <3 21 <3 29. Hence

YN\ 21 <1y O\ 22
O

From Theorems 3.1 and 3.2, we can obtain the following corollary.

COROLLARY 3.3. Let (L;,V,A,T,L1) be a bounded lattice for i €
{1,2,3} and ® : L1 x Ly — L3 be amap. Let (\/;cp )0y = Ve (2:0y)
for each {x;}icr and \/{x € L1 | Oy <3 z} exists for eachy € Lo,z € L3
and we define

y\,z:\/{xeLl\nyggz}.

Moreover, let x © (V¢ yi) = Ve (x ©y;) for each {y;}jes and \/{y €
Ly |  ®y <3 z} exists for each x € L1,z € L3 and we define
L1 x L3 — Loy as

v/ z=\{yeLly|zoy<s2}.

Then (®, 7,,) is an adjoint triple with respect to (L1,<1), (La, <2)
and (Lg, Sg)

EXAMPLE 3.4. (1) Let ({xo, z1,z2}, x0 <1 1 <1 x2), ({Y0, Y1, Y2, Y3}, Yo <2
y1 <2 y2 <2 y3) and ({20,21, 22}, 20 <3 21 <3 22) be lattices. Define
®1,®9 : L1 x Ly — Lg as follows:

O1 | Yo | Y1 | Y2 | Y3 O2 | Yo | Y1 | Y2 | Y3
o | 20 | 20 | 20 | 20 To | 20 | 20 | 21 | 22
T1 | 20 | 21 | 21 | 2 T1 | 20| ”1 | 21 | ?2
T2 | 20 | R1 | 22 | 22 T2 | 20 | ”1 | 22 | 22
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Then, for each k = 1,2, (V;c;2:) Or ¥y = Vicr(xi Or y) for each y €
Ly, I € {0,1,2} and 2 ©f (Ve 9) = Vjes(z Ok y;) for each = €
Li,J C {0,1,2,3).

Since \/{zx € L1 | © ®1y <3 z} exists for each y € Lo,z € L3 and
we define z \g y = \/{z € L1 | v ©®1 y <3 z}. Moreover, \/{y € Lo |
x ©1y <3 z} exists for each x € L1,z € L3, we can define z * z =
V{y € Ly | z ®y <3 z}. Then (®1, /1, \a) is an adjoint triple with

Na | 20| 21| 22

Yo | T2 | T2 | T2 1
Yi | Zo | T2 | X2
Y2 | Lo | T1 | T2
Ys | To | To | T2

20 | 21 | 22
To | Y3 | Y3 | Y3
T1 | Yo | Y2 | Y3
T2 | Yo | Y1 |Ys

Since {x € L1 | z ®3 y2 <3 20} = 0, there does not exist y2 \2 20.
Moreover, there do neither exist y3 2 29 nor ys \o 21.

Ne | 20 | 21 | 22 >,
Yo | T1 | L1 | T2
Yi | Zo | L1 | X2
Y2 - | X1 | T2
Y3 - - | X2

Hence (®2, /2, \y2) is not an adjoint triple.

20 | 21 | 22
o | Y3 | Y3 | Y3
T1 | Yo | Y2 | Y3
T2 | Yo | Y1 |Ys

(2) A complete lattice (L, <,®) is called a quantale [11] if it satisfies

(CQL) a® (b c)=(a®b)®cforall a,b,ce L;

(CQ2) (Vierai) ©b = Viep(ai ©b) and a © (Ve bi) = Ajer(a © by)
for all a,a;,b,b; € L.

DefineaNb=V{r e L|z®a<blanda S b=\{yeL|ady<
b}. Then (®, 7, ) is an adjoint triple with respect to (L; = L, <;=<),
for i =1,2,3.

(3) Define ® : [0,1] x [0,1] — [0,1] by

0, f0<2<03,0<y <04,
x Ay, otherwise.

Then (Vier 2:) ©y = Vier(zi ©y) and 2 © (Ver i) = Vier(z © ;) for
all z,x;,y,y; € [0,1]. But

0:0.2®(/\n€N(04+ ) /\neN(o2® 04+ )):0.2,
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We can obtain N\, [0,1] x [0,1] — [0,1] as "y = \/{z € [0,1] |
xOz<yl, z\y=V{z€[0,1] | z0xz <y} Then (®,\, ) is an
adjoint triple with

0.4, ifz<03,xz>y

xS y=< v, ifr>03,2>y
1, if x <y,
03Vvy, ifz<04,xz>y
rTNY=< Y, ifx>04,2>y
1, ifzx <wy.

THEOREM 3.5. Let (L1,<1), (L2,<2) and (L3, <3) be lattices and
/‘: Ly x Ly — Lo be a map.
(D) Ifx /~ (Njes i) = Njes(@ / 2j) for each {z;}jes and N{z € L3 |
x Sz >9 y} exists for each x € L1,y € Ly and define ® : L1 x Ly — Lg
as
x@yZ/\{ZEL3|x/‘222y},
thenx Oy <sgz iffy <sx / z.
(2) If (V,;ep i) /2= Nieg(wi 7 2) for each {x;}icr and \/{z € L1 |
x /' z >9 y} exists for each z € L3,y € Ly and define \: Ly X L3 — L
as
y\,z:\/{xel}l |z 7z >9 vy},
then x <y y \(z iffy <gz /2.

Proof. (1) Define fy : Ly — Lo as fo(2) =z /" 2. Then fu(\;c; %) =
z 7 (Njes#i) = Njes(@ 7 z) = Njey fo(2i). There exists Ky, : Ly —
L3 such that

Kp(y)=N\z€Ls|z 2>y}
Define x ® y = Ky, (y). Then if x 7 2z > y, then Ky, (y) <3 2.

If K¢,(y) <g 2z, thenz 2z >y « / Ky, (y) >1 y. Hence K¢ (y) =
rOy<szifly <oz Mz fal2).

(2) Define f* : Ly — Lp as f*(x) =  / z. Then f*(\/;c;z:) =
(Vierwi) /2= Nier(@i 7 2) = Njep f7(2i). There exists Ky= : Ly —
L4 such that

Kp(y)=\{zeLi|z 72>y}
Define Ky-(y) =y \, 2.

If v /2>y, then Kf-(y) >2 .

If Ky=(y) 23 2, then Ky=(y) /2 = Npefuer, o om0 3 (W /1 2) 22 Y.

Hence x <; Ky=(y) =y \ 2 iff y <o f?(x) =2 " 2.
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O

COROLLARY 3.6. Let (L1,<1), (L2,<2) and (L3, <3) be lattices and
\2 LQ X L3 — L1 be a map.

(1) Iy N\ (Nses 7) = Ases(y ) for cach {z} e and Az € Ls |
y \( 2z >1 x} exists for each x € L1,y € Ly and define ® : L1 x Ly — L3
as

x@yZ/\{zELg\y\zzlx},

then z Oy <3 z iff x <1 y \( 2.

(2) If (Ve vi) 2 = Nieg (i \ 2) for each {y;}ier and \/{y € L2 |
y \( z >1 x} exists for each z € L3, x € Ly and define /*: Ly x Ly — Lo
as

v/ z=\{yeLlaly /2> 2},
theny <oz Sz iff x <19y \| 2.

EXAMPLE 3.7. (1) Let (Ll,gl) = ({$0,£K1,ZC2},$0 <1 71 <1 xg),

(L2,<2) = ({yo,y1,¥2,¥3},% <2 y1 <2 y2 <2 y3) and (L3,<3) =
({20, 21, 22}, 20 <3 21 <3 22) be lattices. Define 1, 79: L1 X L3 — Lo
as follows:

1 20 | 21| 22 o 20| 21 | 22
To | Y3 | Y3 |Ys To | Y3 | Y3 |Ys
T1 | Y1 |Y2|Ys T1 [ Yo | Y2 | Y3
T2 Yo | Y1 | Y3 T2 1Yo | Y1 | Y2

Since © 1 (Ajeszi) = Njes(@ /1 zj) for each {z;}je; and A\{z €
Ls | ¢ /1 z >2 y} exists for each © € L1,y € Lg, we can obtain
®1:L1 x Ly — L3 as

x@ly:/\{zeL3|x/‘1222y}.

Since {z € L3 | ®a 9 2 >2 y3} = 0, w9 ®2 y3 dose not exist from the
following table.

O1 | Yo | Y1 | Y2 | Y3 O2 | Yo | Y1 | Y2 | Y3
To | 20 | 20 | 20 | 20 Lo | 20 | 20 | 20 | 20
T1 | 20 | 20 | 21 | 22 T1 | 20| 21| 21| 22
T2 | 20 | R1 | 22 | 22 T2 | 20 | #1 | 22 | —

Since Y and 73 satisfy the conditions of Theorem 3.5(2), N\ and N\
exist as follows.
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N | 20 | 21| 22 Ne | 20 | 21| 22
Yo | T2 | T2 | T2 Yo | T2 | T2 | T2
Y | L1 | T2 | X2 Y1 | o | T2 | X2
Y2 | T1 | T1 | T2 Y2 | o | T1 | T2
Ys | To | To | T2 Ys | To | To | T1

Hence (®1, /1, \q1) is an adjoint triple with respect to (L1, <1), (L2, <2)
and (L3, <3). But (®2, 2, \y2) is not an adjoint triple.

4. Adjoint triples for fuzzy information systems

In this section, we construct adjoint triples for fuzzy information
Systems.

LEMMA 4.1. Let (®, /,\) be an adjoint triple with respect to (L1, <
), (L2, <9) and (L3, <3). Then the following properties hold.

(1) (Vier i) ©y = Vi (@i ©y) for each {xi}ier and x O (Ve yyi) =
Ve (x ©y;) for each {y;}je; where the arbitrary joins exist.

(2) /7 (Nier zi) = Nier(@ 7 zi) and (V ey xi) 7 2 = Nigg(zi 7 2)
where the arbitrary join and meets exist.

(3) ¥\ (Nier 20) = Nier( N zi) and (Vi vi) o2 = Nigr(yi i 2)

where the arbitrary join and meets exist.

Proof. (1) Let 1 <1 2. Then x1 <3 22 <1 y2 \y 22 ® y2. Hence
71 ©y2 <3 w2 ® y2. Thus, \/iel(fvi Oy) <s (\/ier ;) ©y.

Since 2; <1 ¥ \« Vier(®i ©¥), Vier i <1y \ V,er(z: ©y). Hence
(Vier zi) ©y <3 Vier(@i ©y). Thus V(2 ©y) = (Vier i) © y.

(2) Let 21 <3 2. Since x ® (x N 21) <321 <g 22,2 21 <o x  29.
Hence z 7 (\; zi) <2 \;(z N\ z).

Since x © \;(z N\ zi) <3 Ni(x © (2 ¢ 21)) <z A\, zis N\;(@ N\ 2) <o
z /(N zi). Hence \;(z o 2i) =2 7 (\; z)-

Let x1 <y z2. Since £1 ® (xy N 2) <g 22O (v2 1 2) <3 2, w2 /2 <9
x1 / z. Thus, (V, ) /2 <o N\;j(xi /7 2). Moreover, p <o z; / z for
alli € I, z; <y p\y 2. Then \/,.;z; <y p N\ 2 Hencep <o\, .;2; 7 2.
So, (V; @) /2= Ni(wi /7 2).

(3) It is similarly proved as (2).

]

THEOREM 4.2. Let (®, /,\,) be an adjoint triple with respect to
(L1,<1), (L2,<32) and (L3,<3) and X, Y be sets. Define ® : L x
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LY — (L)X as (f ©® g)(x)(y) = f(z) ® g(y). Then there exist
L x (L)Y — LY and N\ LY x (LY)* — L defined as
)

(f 7 )(y) = Noex (F(2) 7 9(@)(y)),
(9 N )(@) = Nyey (9(y) () ().

Moreover, (®, /,\) is an adjoint triple with respect to (Li*, <), (LY, <2
) and ((LY)X,<3) such that

f<ig oy it fog<svy iffg<s f 7.

Proof. Put ¢ (g)(z)(y) = f(z) ©g(y) for a fixed f € L. By Lemma
4.1 (1)a Hf(\/iergi) =f0 (VieI‘gi) = vier(f ®gi) = VieFHf(gz’)-
Define Hip, : (L DX = LY as

M, (¥) = \/{g € LY !Hf( )(2)(y) <3 ¢(2)(y)}-
b(x

3
Since Tl (g)(x)(y ) = f(z) © g(y )(¥), 9(y) <o Npex(f(2) /7
¥(2)(y)). Hence Hu, (¢)(y) < /\xeX( (z) 7 @ﬁ(fv)(y))
On the other hand, since II;(f 7 ¥)(z)(y) = f(z) © N,ex(f(2)
P(2)(y)) <3 f(@)O(f(z) /1 d(x )( )) <3 ¥ (2)(y), we have H, (¢)(y) >2
(f 7 0)Y) = Noex (f(z) /7

3
Naex (f(2) /7 P(2)(y)). Thus, Hir, () (y) =
Y(x)(y)). It follows

Hy(9)(x)(y) = f(z) © g(y) <3 ¥(x)(y)
it g(y) <o Hn, (¥)(y) = (f /" ¥)(y).

Put I19(f) = f©g for a fixed g € LY. By Lemma 4.1 (1), 9\ icr fi) =
(Vier f)) © 9 = Vier(fi © 9) = Vier 19(fi). Define Hpo « (LY)™ — L

Hio(¥) = \{f € LT | I(f)(@)(y) <3 ¥(x)(y)}.

Since Ve x (f (2 )®g( ) <3 ¥(2)(y), f(x) <1 9(y) v ¥(x)(y). Hence
His (¥)(2) <1 N\yey (9(y) N9 (2) (1))

On the other hand, since IT(A,, ¢y (9(y) “ ©(2)(9))) (%) = (Ayey (9(y)
(@) () © 9() <3 (9(y) v ¥(@)(¥)) © g(y) <3 P(z)(y), we have
His () () 21 N\yey (9(y) ( (). Thus, Hits (v )(x) Nyev (9(y)

Y(x)(y)). Tt follows

I9(f) () (y) = f(x) © g(y) <3 P(2)(y)
iff f(z) <1 Mo (P)(2) = (9 /7 ¢)(@).
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REMARK 4.3. Let (®, 7, \,) be an adjoint triple with respect to
(L1,<1), (L2,<2) and (L3, <3). Let X be a set of objects, Y be a set
of attributes and the triple (X,Y,® € (LY)X) be a fuzzy information
system. From the adjoint triple (®, 7, \,) with respect to (Ly, <1),
(LY, <) and ((LY)¥,<3) in above theorem, we construct the concept-
forming operators (ref.[6,13,14]) F : L{ — LY and G : LY — L are
defined as follows

F(f)(y)
G(g)(x)

(f 7))
(9 \¥)(x)

Naex (f(x) 7 9(2)(y)),
Nyey (9(y) () (y))-

THEOREM 4.4. Let (®, /7, \,) be an adjoint triple with respect to
(L1,<1), (Lo, <2) and (L3, <3). Define ® : Ly x (L¥)* — LY as
(f ©d)(y) = Vyex(f(z) © ¢(z)(y)). Then there exist /: L{ x LY —
(LYY and N\ (L)X x LY — L defined as

) =

(f 7 h)(x)(y) = f(x) ~ Wy),
(@ N h) (@) = Ayey (6(@)(y) i h(y)).

Moreover, (®, /,\,) is an adjoint triple with respect to (Li*, <1), ((LY)*

) and (LY, <3) such that
f<ioNh il fOo<sh iff¢ <o f "h

Proof. Put Af(¢) = f ® ¢ for a fixed f € L. and A?(f) = f
By Lemma 4.1 (1), Af(\/ier $i) =[O (\/ler@) — vz‘er(f@ 1)
Vier Ay(¢:). Define jAf LY — (LY)X as

Tas () = \/{6 € (LX)¥ | As(0)(w) <5 h(y)}.

Since Af()(y) = \/xeX(f( z) © ¢(x)(y)) <3 h(y), o(x)(y) <2 f(z)
h(y). Hence Ja,(h)(x)(y) <2 f(x) / h(y )

For (f / h) € (Ly)™ such that (f 7 h)(2)(y) = f(z) /7 h(y),
since Ap(f 7 h)(y) = Veex (f(2) © (f(2 ) h(y))) <s h(y), we have
TIn; (W) (@)(y) 22 f(z) 7 h(y). Thus, Ta,(h)(x)(y) = ( )/ h(y). Tt

follows

)
Ap(@) () = Voex (f(2) © ¢(x)(y)) <5 h(y)
iff o(x)(y) <2 I, (h)(2)(y) = f(z) 7 h(y).

Put A?(f) = fogafixed ¢ € (LY)*. By Lemma 4.1 (1), A®(\,or fi) =

(\/iEF fi)©o¢= \/zer(fi © )= VzGF A¢(fi) Define Jpo : L}«;f — L{( as
Tne(h) = \/{f € LI | A%(£)(y) <s h(y)}-

7§2
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Since A?(f)(y) = Vaex (f(2) © ¢(2)(y))
h(y). Hence Jne(h)(x) <1 /\yey( (=)(y)

On the other hand, since A?(A, oy (¢(—
h(2) ©6() (1)) <5 V,ex (6)() N (

TIne (M) (@) 21 Vyey (6(2)(y) N A(y))- T
h(y)). It follows

A?(f)(y) = \/xeX(f( ) © ¢(x)(y)) <
iff f(z) <o Tne(h)(@) = Nyey (d(2)( )\h(y))-

REMARK 4.5. Let (®, 7,\,) be an adjoint triple with respect to
(L1,<1), (L2,<2) and (L3, <3). Let X be a set of objects, Y be a set
of attributes and the triple (X,Y,¢ € (LY)¥) be a fuzzy information
system. From the adjoint triple (®, 7, ) with respect to (L{<7 <1),
(LY)¥, <) and (LY, <3) in above theorem, we construct a fuzzy rela-
tional erosion and fuzzy relational dilation (ref.[6,13,14]) with respect to
¢, €1 LY — L and §, : LY — LY is defined as

ep(h)(x) = (6 N\ M) (@) = N\yey (8(2)(y) s h(y)),
0s(F)(y) = (f © ) (Y) = Vyex (f(z) © () (y))-

From the above theorem, we similarly prove the following corollary.

COROLLARY 4.6. Let (®, 7,\,) be an adjoint triple with respect
to (L1,<1), (La,<s) and (L3, <3). Define ® : (LY)X x LY — L as
(0©9) () = V,ex(0(x)(y) ©g(y)). Then there exist /: (LY )X x L —
LY and N\ LY x L — (LY)X defined as

(07 h)(2)(y) = Noex (0(2)(y) /7 h(z)),

(9 N h)(@)(y) = 9(y) “ h(z).
Moreover, (®, /,\,) is an adjoint triple with respect to ((LY)X,<1),
(LY, <) and (L5, <3) such that

0<,g\hif0©g<sh iffg<y0 7 h.

REMARK 4.7. Let (®, 7, be an adjoint triple with respect to
(L1,<1), (L2,<2), (L3,<3). Let X be a set of objects, Y be a set
of attributes and the triple (X,Y,0 € (L1)X) be a fuzzy information
system. From the adjoint triple (®, 7,\,) with respect to ((LY)X, <1),
(LY, <) and (L, <3) in above corollary, we construct a fuzzy relational
property-oriented erosion and fuzzy relational property-oriented dilation
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ref.[6,13,14]) with respect to 0, € : L& — LY and 8, : LY — L is
3 2 ¢ 2 3
defined as

co(h)(y) = (0 7 1)(y) = Noex (0(2)(y) /7 h(z)),
d9(f)(x) = (0 ©9)(@) = Vyey (0(2)(y) © 9(y))-

THEOREM 4.8. Let (®, /,\,) be an adjoint triple with respect to
(L1,<1), (L2,<2) and (L3, <3) and X, Y be sets. Define /: L x
(L)X — LY as

(f 7~ 9)w) = N\ (f(=) /A d()(y)).
zeX
Then there exist \;: LY x (L)X — L¥ and ® : Ly x LY — (L3)*

defined as

(9 ) (@) = Ayey (9(y) ¥ (2)(y)).

(fO9@)(y) = flz) ©g(y).
Moreover, (®, /,\,) is an adjoint triple with respect to (L3, <1), (LY, <5
) and ((LY)X,<3) such that

[f<igN\w it fOg<zy iffg<o f 7.

Proof. Put ©Y(f)(y) = /\xeX( () / ¢(x)(y)) for a fixed map
W € (L3)*. By Lemma 4.1(2), 0% (Vyer fi) () = Apex ((\/zer fi(z)) /7
(@)1) = Neex(Nier(fi(®) 7 (@) (1)) = Aser ©%(fi)(y)- Define

Keov : LY — L as
Keu(9) = \/{f € L¥ [ ©°(f)(y) >2 9(v)}-

Since ©¥(f)(y) = /\a:EX(f( z) S p(z)(y) =2 9(v),
Y(x)(y) implies f(z) ® g(y) <3 ¥(z)(y). Thus f(z) Y
Y(x)(y)) = (9 \(¢¥)(z). Hence /C@w( )(@) <1 Ayey (9(y) N ¥(2)(y))
(9 N\ ) ().

On the other hand, since ©%(g
V()W) S Y()(Y) =2 Aex((9(y
we have Kgu(9)(x) >1 /\yEY( (y)
Keouw(9)(@) = Nyey (9(y) N ¥ (z)(y)

(f 7)) = Npex (F2) /(2
iff Kow(9)(x) = (9 v 9)(2)

>
Put ©f(¥)(y) = /\:peX( (z) w(x)(y)) for a fixed map f € L.
By Lemma 4.1 (2), © (/\zel‘ Vi) = xex(f(x> / /\zerwz(@(y)) =
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Nier Naex (F(@) 7 i(@)(y)) = Njer Of(¥i). Define Ko, : Ly —
(L3)* as

Ko, (9) = \/{v € (L3)* | ©;(&)(y) 22 9(y)}.

Since O(¢)(y) = Npex(f(z ) S (@) (y) 22 9(y), 9(y) <2 fla
¢((if))(y) implies f(z) © g(y) <3 ¢(z)(y). Thus Ke,(9)(x)(y) =3 f( )
g\y).

On the other hand, since ©;(f © g)(y) = Nex(f(z) 7 (f(z) ©
9(y))) =2 g(y), we have Ko, (9)(z)(y) =3 f(2)®g(y). Thus, Ke,(9)(z)(y) =
f(x) ®g(y). It follows

(f 7)) = Nee
iff Ko, (9)(x)(y) =

&\_/

x(f(@) /() (y) = O5(4)(y) =2 9(v)
f(@) © g(y) 23 d(z)(y).

—~

O]

THEOREM 4.9. Let (®, 7,\,) be an adjoint triple with respect to
(L1,<1), (L2,<2) and (L3, <3). Define /: Ly x LY — (LY)* as

(f 7 b)) (y) = f(z) / h(y).
Then there exist \;: (L)X x LY — L and ® : LY x (LY)* — LY

defined as

(0N h)(2) = Nyey (8(2)(y) s N(y)),

(f ©)(Y) = Voex (f(2) © o(2)(y))-
Moreover, (®, /,\) is an adjoint triple with respect to (L:*, <1), ((LY¥)*, <
) and (LY, <3) such that

f<ioNh iffOP<gh iff¢p <o f 7 h.

Proof. Put ®"(f)(z)(y) = f(x) / h(y) for a fixed map h € LY. By
Lemma 4.1 (2), ®"(Vep fi)(@)(y) = (Vier fi(2)) /7 hy) = Nier (fi(2)
h(y)) = Nier @"(fi) (@) (y)- Define Pyn : (L3)* — L as

Pon(¢) = \/{f € LT | "(f)(2)(y) 22 ¢()(y)}
Since ®*(f)()(y) = f(z) / My) 22 d(2)(y), f(z) © ¢()(y) <3
h(y). Thus f(z) <1 Ayey(o(2)(y) N h(y)) = (¢ i h)(z). Hence
Pon(0)(x) <1 Ayey (¢(2)(y) N b)) = (& N h)(2).

Since <I>h(¢ Nh)(z)(y) = AyEY(¢(x)(y) N Ay
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h(y)) = (¢ N\ B)(x). Thus, Pen(¢)(x) = Ayey(¢(2)(y) N\« h(y)) =
(¢ \( h)(z). Tt follows

f 7 W)(@)(y) = f) / hly) = 2" (f)()(y) >2 d(z)(y)
iff Py (0)(2) = Nyey (0(2)(y) N h(y)) = (¢ N h)(2) 21 f(2).
) f

Put ®¢(h)(x )( ) = f(z) 2 h(y a fixed map f € L. By

Lomma 4.1 (2), @5 Ay B W) = F@) A Ascr i) = Aver (Fx)
hi()) = Aier 5 (h)(@)(y). Define Po, : (LY ) — LY as

Pa,(0) = \{h € L} | @5(h)(x)(y) =2 d(x)(y)}.

Since ®y(h)(x)(y) = f(x) 7 h(y) 22 o(x)(y), f(z) © ¢(x)(y) <2 h(y).
Thus Py (¢) 23 V,ex (f(2) © () (y)).

Since @f(V,ex (f(z) © ( JEN@)(y) = f@) 7 Veex(f(2) ©
¢(@)(y)) 22 f(x) /7 (f(x) ©d(2)(y)) =2 ¢(2)(y), we have Pe,(9)(y) <3
Vaeex (f(z) © () (y))- Thus Pa(9)(y) = Vaex(f(z ) © 6la)(y). It

follows

(f 7 W)(@)(y) = fx) 7 hly) = @p(h)(x)(y) 22 ¢(x)(y)
iff Po;(0)(y) = Vaeex (f(2) © ¢z )( ) = (f©0)(y) <s h(y).

O]

From the above theorems, we similarly prove the following corollaries.

COROLLARY 4.10. Let (®, /,\,) be an adjoint triple with respect
to (L1,<1), (L2,<2) and (L3, <3) and X, Y be sets. Define \: L%/ X
(L)X — L as

(g \)(@) = N\ (9y) \v(@)(®)).
yey

Then there exist /: Ly x (L¥)* — LY and ® : LF x LY — (L)X
defined as

(f 7)) = Neex (f(2) \¥(2)(y).
(fo9)(2)(y) = f(z) ©g(y).

Moreover, (®, /,\) is an adjoint triple with respect to (Li*, <1), (LY, <2
) and ((LY)X, <3) such that

f<og oy it fog<svy iffg<s f 7.
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COROLLARY 4.11. Let (®, /7, ) be an adjoint triple with respect to
(L1,<1), (Lo, <2) and (L3, <3). Define \: (L%/)X X L%f — L{( as

(B N\ h)(@) = N\ (6(2)(y) \ h(y)).
yeyY

Then there exist /: LY x LY — (LY)X and © : L x (LY)* — LY

defined as
(f S h)(@)(y) = flz) / h(y),
(f©)(Y) = V,ex(f(z) © o(z)(y)).

Moreover, (®, /,\,) is an adjoint triple with respect to (L:*, <1), ((L3)*, <2
) and (LY, <3) such that

f<ioNh iffod<sh iffg<s f /h.

COROLLARY 4.12. Let (®, /,\,) be an adjoint triple with respect to
(L1,<1), (L2, <2) and (L3, <3). Define /: (LY)X x L¥ — LY as

0 /W) (@)(y) = /\ O(2)(y) 7 h(z)).
zeX
Then there exist ® : (L)X x LY — L& and N\ LY x L¥ — (L7)*
defined as
(0 ©9)(@) = Vyex (0(x)(y) © 9(y)),
(9 N\ h)(@)(y) = g(y) \h(z).

Moreover, (®, /,\,) is an adjoint triple with respect to ((LY)X,<1),
(L%/, <y) and (Lg(, <3) such that

0<ig\h if0©g<sh iffg<s6 "h.

COROLLARY 4.13. Let (®, 7, ) be an adjoint triple with respect to
(L1,<1), (L2, <2), (L3, <3). Define \;: LY x L¥ — (L)X as
(9 \ h)(2)(y) = 9(y) \ h(x).

Then there exist ® : (LY)X x LY — L& and 2 (L)X x LY — LY
defined as

(0 © 9)(x) = Veex(0(@)(y) ©9(y)),

(0 7 h)(2)(y) = Noex (0(x)(y) /7 h(z)).
Moreover, (®, /,\,) is an adjoint triple with respect to ((LY)X,<y),
(LY, <o) and (L5, <3) such that

0<ig\hif0©g<sh iffg<s6 7 h.
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EXAMPLE 4.14. Let X = {z,y} be a set of cars and Y = {a,b,c}
be a set of attributes. Let (L; = {0,3,1},0 <; 3 <3 1), (Lo =
{0,,21},0 <o 2 <9 2 <5 1) and (L3 = {0,1,2},0 <3 1 <3 2) be
lattices. Define ® : L1 x Ly — L3 as follows:

olo[z]3]1
0(010]1]2
;l0[1[1]2
110111212
We can definep /r=\{ge€ Ly |p®qg<szr}and g \,r=\V{peLi]

p©®q <gr} as follows

NIIRP SToTTT2

0O |1|1]1

I 011111

10111

3 L Tol2]1

z 1ol 2 3

3 2 1]of[i]1

1 ]0(0(1 3
Then (®, 7, is an adjoi

int triple.

(1) For f = (f(x), ( ) = (1,3) € L, g = (9(a),
(3,0,2) € LY and ¢(z) : Y — Lg for z € {z,y} with ¢(z)(a
as

1 0 2 1 1 2
f®g:<1 0 1>§3¢:<2 0 1)'
From Theorem 4.2, we have
F=(13) <1 (aN)(=) = Ayey (9(v) (=) (v) = (1,1),
9=3:0.3) <2 (f /9)(=) = Npex (f(@) N (@) (=) = (1,0, 3).
), h(b), h(c)) =

(2) For f = (f(
(0,2,1) € LY and ¢

as
0 2 1 0 1 &
= < g
=(o ] )=en=(31 1)
From Theorem 4.3, we have

:E)af(y)) = (1’%) € Lf? h = (h(a 7h(b
(x) 1Y — Lg for x € {z,y} with ¢¥(x)(a) = ¢¥(z,a

F=(1L3) <1 (6 \D)(=) = Ayey (9(=)(y) \h(y)) = (1, 1),
(f© )( ) = Vaex (f(2) ©9(2)(-)) = (0,2,1) <3 h = (0,2,1)
(3) For g = (§707%) € L%f’ h = (h(z 7h(y)) = (1,2) € Lg( and
¢(z) 1Y — L3 for x € {x,y} with 0(x)(a) = 6(z,a) as

(01 3 (113
@_(101>§2(9fh)_ 11 1
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From Corollary 4.4, we have
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